Pure Logic of Necessitation + L
動機
In the context of provability logic, one may wonder the completeness of $ \mathsf{N + GL}($ \sf GL \equiv \Box(\Box\varphi \to \varphi) \to \Box\varphi), which is not of the form $ \mathrm{Acc}_{m,n} and thus not covered by this paper. Many of the $ \sf N counterpart of the famous extensions of $ \sf K are still left uninvestigated.
Def
$ \sf NLは次の公理と推論規則を持つ.
Axiom
$ \sf Taut: 命題論理のトートロジー全て
$ \sf L: 様相論理の公理L: $ \Box(\Box\varphi \to \varphi) \to \Box\varphi Rule
モーダス・ポネンス: $ \sf NL \vdash \varphiと$ \sf NL \vdash \varphi \to \psiから$ \sf NL \vdash \psiを導出 ネセシテーション: $ \sf NL \vdash \varphiから$ \sf NL \vdash \Box\varphiを導出 証明可能性述語について$ T \vdash \varphi$ \implies$ T \vdash \mathrm{Pr}_T (\overline{\ulcorner \varphi \urcorner})に対応